Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange.

نویسندگان

  • M Tani
  • J R Neely
چکیده

The roles of H+-Na+ and Na+-Ca2+ exchange in the depression of ventricular function were studied in the reperfused isolated ischemic rat heart. Zero-flow global ischemia was induced for either 15 or 30 minutes and was followed by 30 minutes of aerobic reperfusion. Intracellular Na+ (Na+i) and 45Ca2+ uptake were measured during ischemia and reperfusion. Accumulation of Na+i was modified by prior glycogen depletion and by treatment with amiloride, a H+-Na+ exchange inhibitor, or monensin, a Na+ ionophore. Na+i rose continuously during ischemia and rapidly during the first two minutes of reperfusion. The larger inhibitory effect of amiloride and preischemic glycogen depletion was on Na+i accumulation during reperfusion; this finding suggests that the uptake occurs by H+-Na+ exchange. Reduction of Na+i accumulation by glycogen depletion was associated with less lactate and, presumably, H+ production and accumulation during ischemia. The rapid increase in Na+i during early reperfusion may reflect the readjustment of the low intracellular pH resulting from ischemia. The level of Na+i at the end of ischemia and especially after two minutes of reperfusion were linearly correlated with 45Ca2+ uptake and depression of ventricular function during subsequent reperfusion. This highly significant correlation between Na+i and 45Ca2+ uptake when Na+i was varied by several independent procedures, including monensin, strongly suggests that reperfusion 45Ca2+ uptake occurs at least in part by Na+-Ca2+ exchange. The rate of 45Ca2+ uptake during reperfusion was linearly and highly significantly correlated with elevation of diastolic pressure, reduced developed pressure, and decreased recovery of ventricular function. The data strongly support a mechanism of ischemic cell damage that involves excessive production and accumulation of H+ during ischemia that exchanges for extracellular Na+ during ischemia and rapidly during the first few minutes of reperfusion. Increased Na+i then causes excessive 45Ca2+ uptake and depressed recovery of cellular functions with continued reperfusion. Increased levels of Na+i may be a major event that couples a decreased intracellular pH during ischemia to excessive 45Ca2+ uptake and depressed recovery of cellular function with reperfusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury.

During ischemia and reperfusion, with an increase in intracellular Na+ and a depolarized membrane potential, Ca2+ may enter the myocyte in exchange for intracellular Na+ via reverse-mode Na+-Ca2+ exchange (NCX). To test the role of Ca2+ entry via NCX during ischemia and reperfusion, we studied mice with cardiac-specific ablation of NCX (NCX-KO) and demonstrated that reverse-mode Ca2+ influx is ...

متن کامل

Defects in sarcolemmal Ca2+ transport in hearts due to induction of calcium paradox.

Na+-Ca2+ exchange and Ca2+-pump activities were studied in sarcolemmal vesicles isolated from rat hearts subjected to "calcium paradox" on perfusion with Ca2+-free medium followed by reperfusion with medium containing 1.25 mM Ca2+. Perfusion of hearts with Ca2+-free medium for 5 minutes did not affect the Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake, or Ca2+-stimulated ATPase activities...

متن کامل

Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury.

To elucidate the role of intracellular Na+ kinetics during ischemia and reperfusion in postischemic contractile dysfunction, intracellular Na+ concentration ([Na+]i) was measured in isolated perfused rat hearts using 23Na nuclear magnetic resonance spectroscopy. The extension of the ischemic period from 9 minutes to 15, 21, and 27 minutes (at 37 degrees C) increased [Na+]i at the end of ischemi...

متن کامل

Overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ischemia/reperfusion injury in male, but not female, transgenic mice.

Influx of Ca2+ into myocytes via Na+/Ca2+ exchange may be stimulated by the high levels of intracellular Na+ and the changes in membrane potential known to occur during ischemia/reperfusion. This increased influx could, in turn, lead to Ca2+ overload and injury. Overexpression of the cardiac Na+/Ca2+ exchanger therefore may increase susceptibility to ischemia/reperfusion injury. To test this hy...

متن کامل

The Na+/Ca2+ exchange inhibitor SEA0400 limits intracellular Ca2+ accumulation and improves recovery of ventricular function when added to cardioplegia

BACKGROUND The Na+/Ca2+ exchange inhibitor SEA0400 prevents myocardial injury in models of global ischemia and reperfusion. We therefore evaluated its potential as a cardioplegia additive. METHODS Isolated rat cardiomyocytes were exposed to hypoxia (45 min) followed by reperfusion. During hypoxia, cells were protected using cardioplegia with (n=25) or without (n=24) SEA0400 (1 μM), or were no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 65 4  شماره 

صفحات  -

تاریخ انتشار 1989